Exercise 1
Encoding sketches

Reliable and Interpretable Artificial Intelligence 2017
ETH Zürich
September 27, 2017

Figure 1: A program with integer arrays.

Problem 1. (A warm-up for Problem 2.) Consider the program in Figure 1. Encode the program’s semantics in the Z3 SMT solver (http://rise4fun.com/z3/tutorial). Assume that the array bounds of \(b \) are from 0 to 63 included. Write down a formula asserting that \(b \) is never accessed outside its bounds. Use Z3 to find concrete values for \(a[0] \), \(a[1] \), and \(a[2] \) that guarantee that satisfy the formula.

Problem 2. Encode in Z3 the Pop_Count sketch in Figure 2. Each hole can be replaced by either a fresh constant or any program variable in scope. You can assume 8-bit words and a bounded number of loop iterations. Provide a set of input-output examples as a specification. Run Z3 to synthesize a correct implementation of \(\text{Pop_Count} \).

1 t := a[0]
2 a[0] := a[0] + a[1]
5 c := b[a[0]] + b[a[1]] + b[a[2]]

Figure 2: A sketch of \(\text{Pop_Count} \).