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Background
Formal Verification in Lugano, Switzerland

• Program Verification

• Model checking software (FunFrog, EvolCheck, LoopFrog), ANSI-C
programs

• Efficient decision procedures as computational engines of verification
(OpenSMT)

• Abstractions

• Interpolation-based Bounded Model Checking

• Function summarization [ATVA’12]

• Upgrade checking, Incremental verification [FMCAD’13], [TACAS’13]

• Recursion depth detection [STTT’15]

• Verification-aided regression testing [ISSTA’13]
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• Abstractions
• Leveraging Interpolant strength [CAV’12]

• Loop Summarization [ATVA’08], [ASE’09]

• Program Termination [CAV’10], [TACAS’11]

• Synergy of Abstractions [STTT’10]
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Background
Formal Verification in Lugano, Switzerland

• An SMT-based verification framework for software systems handling
arrays [FMSD’15]

• A quantifier-free interpolation procedure extending Lazy Abstraction
[McMillan’06] to a quantified level [LPAR’12]

• Identification of a class of relations over arrays admitting definable
first-order acceleration [TACAS’13]

• Booster: An Acceleration-Based Verification Framework for Array
Programs [ATVA’14]
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Background
Formal Verification in Lugano, Switzerland

• Boolean and Theory Reasoning (SAT/SMT)

• Proof reduction and proof manipulation for interpolation [FMSD’15]

• Proof Sensitive Interpolation [VSTTE’15]

• Search-Space Partitioning for Parallelizing SMT Solvers [SAT’15]

• Procedure for bit-vector extraction and concatenation [ICCAD’09]

• Generation of explanations in theory propagation [MEMOCODE’10]
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Background
Formal Verification in Lugano, Switzerland

• Boolean and Theory Reasoning (SAT/SMT)

• Solver, OpenSMT, combines MiniSAT2 SAT-Solver with
state-of-the-art decision procedures for QF EUF, LRA, BV, RDL, IDL

• Extensible: the SAT-to-theory interface facilites design and plug-in of
new decision procedures

• Incremental: suitable for incremental verification

• Open-source: available under MIT license

• Parallelized: efficient search space partitioning

• Efficient: competitive open-source SMT Solver for QF UF, IDL, RDL,
LRA according to SMT-Comp.
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Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32



Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable
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Interpolation
Background

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• I as over-approximation A conflicting with B

A I B
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Interpolation-based Model Checking
Problems

• Problems

• Size affects efficiency

• Interpolants different in their logical strength are needed

• Collection of individual algorithms, no possibilities for adjustments wrt
the model checking tasks

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 13 / 32



Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 14 / 32



Interpolation-based Model Checking
Motivation

• PeRIPLO is a multi-purpose interpolation framework

• aims at producing interpolants that are suitable for the whole spectrum
of interpolation applications

• emphasis on constructing small interpolants

• flexibility in strength

• Pre-processing approaches

• proof reduction and compression

• proof manipulation for interpolation

• Proof senstive Interpolation
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The Bird’s Eye View to PeRIPLO

Proof optimizerProof expander

Resolution proof optimized proof

SAT solver

φ

Interpolator

Itp

PeRIPLO

Application

proof skeleton

• Given an unsatisfiable propositional formula φ PeRIPLO constructs an
interpolant in circuit form by

1 Solving φ and extracting a compact proof skeleton from the SAT solver

2 Expanding the proof skeleton to a resolution proof

3 Optimizing the resolution proof to a smaller proof

4 Constructing an interpolant from the optimized proof
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PeRIPLO Features

• Basic interpolation:

• A ∧ B → ⊥

• A→ I and I ∧ B → ⊥

• var(I ) ⊆ var(A) ∩ var(B)

• Variations:

• Path, Tree and DAG interpolation

• Proof Optimization [FMSD15, ICCAD10]:
• removing resolution steps which reintroduce already resolved pivot

variables

• postponing unit resolution steps until the end of the resolution proof

• using different local rewriting rules which preserve the validity of the
proof
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PeRIPLO Interface
Features

• Multifaceted interface

• A clear API for C++ for tuning the interpolation algorithm, inserting a
formula to PeRIPLO, and fetching the interpolant from PeRIPLO

• Reading and writing smtlib2

• Reading and writing the Aiger format
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Interpolation in PeRIPLO
Labeling functions

• Labeled Interpolation System (LIS) framework [D’Silva et al. 2010]

• construction of interpolation algorithms from labeling functions

• generalization of various interpolation algorithms (i.e., Ms

[McMillan03], P [Pudlak97], Mw [D’Silva10])

Interpolation algorithm

LIS framework

template for labeling function L

(R,A,B) I
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Interpolation in PeRIPLO
Definitions

• Given a resolution proof R, (v ,C ) denotes that the variable v occurs
in a clause C of R

• The labeling function L assigns a label from the set {a, b, ab} to each
occurrence (v ,C ) in R

• Given a propositional formula A ∧ B, a variable is either local, if it
occurs only in A or B, or shared if it occurs in both A and B
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Interpolation in PeRIPLO
Labeling Functions [VSSTE15]

• The label L(v ,C ) = b if v is local to A and L(v ,C ) = a if v is local
to B.

• The label can be chosen freely for occurrences of shared variables
• Tuning the label for the shared occurrences results in different

interpolation algorithms
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PeRIPLO and Different Interpolation Algorithms

• Labeling all shared variable occurrences as

• a results in the weakest interpolant Mw available in LIS

• b results in a strong interpolant Ms available in LIS

• ab results in an interpolant P that is somewhere in the middle

• The aforementioned approaches are fixed schemas with no possibility
for adopt to the task
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PeRIPLO and Proof-Sensitive Interpolation

• PeRIPLO offers certain labeling functions that specifically address the
interpolant size:

• Labeling all occurrences in A as a and B as b results in an interpolant
with minimum number of distinct variables

• By analyzing the number of occurrences in the A and B part of the
proof R it is possible to construct interpolants that have a small
number of connectives
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The Proof-Sensitive (PS) Labeling Functions

• PeRIPLO implements the proof-sensitive labeling functions specifically
targeted for constructing small interpolants

• let fA(p) = |{(p,C ) | C ∈ A}| be the number of times the variable p
occurs in A, and fB(p) = |{(p,C ) | C ∈ B}| the number the variable
p occurs in B.

• The proof-sensitive labeling function LPS is defined as

LPS(p,C ) =

{
a if fA(p) ≥ fB(p)

b if fA(p) < fB(p).
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The Proof-Sensitive Labeling Functions

• PeRIPLO also provides weak and strong versions of Proof-Sensitive
Approach

• Hierarchy of Interpolation Algorithms provided by PeRIPLO

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms
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PeRIPLO API

SAT solverInterpolator Labeling

Application

φ = A ∧ B SAT or
UNSAT

Proof of
UNSAT

Interpolant I
A → I
B ∧ I → ⊥

Partitions
A and B

Labeling
function

Partitions
 A and B

Proof
analysis

Strength
requirement

fA

Partitions
A and B

fB

• The API of PeRIPLO provides the application with a full control over
the interpolant generation

• Many of the more routine tasks are implemented efficiently inside
PeRIPLO so that the user does not need to take care of such details

• The system makes it comfortable to construct and experiment with
new labeling functions
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Reduction Approach Evaluation [ICCAD’10]
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

# Avgnodes Avgedges Avgcore T (s) Maxnodes Maxedges Maxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%

1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

• Ratio — time threshold as fraction of solving time
• # — number of benchmarks solved
• Avgnodes , Avgedges , Avgcore — average reduction in proof size
• T (s) — average transformation time in seconds
• Maxnodes , Maxedges , Maxcore — max reduction in proof size
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Applications - FunFrog [FMCAD12] and eVolCheck
[TACAS13]

• Bounded Model Checkers

• Interpolants used as Function Summaries

• FunFrog - C Incremental Checker
• Stronger interpolants suit better [CAV12]

• http://verify.inf.usi.ch/funfrog

• eVolCheck - C Upgrade Checker
• Weaker interpolants suit better [CAV12]

• http://verify.inf.usi.ch/evolcheck
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Applications - FunFrog and eVolCheck
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PS and PSs consistently lead to better verification time
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Conclusions

• PeRIPLO is an interpolation tool for propositional logic
• Generic and flexible framework for producing interpolants on demand

• Provides an API, an smtlib2, and an AIGER interface for
communicating with other tools

• Particular emphasis on constructing small interpolants while
maintaining guarantees of interpolant strength

• For more information see http://verify.inf.usi.ch/periplo!

Future work

• Extending the interpolation to first-oder logics in SMT
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Thank you for your attention!
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