
The PeRIPLO Propositional Interpolator

N. Sharygina

Formal Verification and Security Group

University of Lugano

joint work with Leo Alt, Antti Hyvarinen, Grisha Fedyukovich and
Simone Rollini

October 2, 2015

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 1 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 2 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 2 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 2 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 3 / 32

Background
Formal Verification in Lugano, Switzerland

• Program Verification

• Model checking software (FunFrog, EvolCheck, LoopFrog), ANSI-C
programs

• Efficient decision procedures as computational engines of verification
(OpenSMT)

• Abstractions

• Interpolation-based Bounded Model Checking

• Function summarization [ATVA’12]

• Upgrade checking, Incremental verification [FMCAD’13], [TACAS’13]

• Recursion depth detection [STTT’15]

• Verification-aided regression testing [ISSTA’13]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 4 / 32

Background
Formal Verification in Lugano, Switzerland

• Program Verification
• Model checking software (FunFrog, EvolCheck, LoopFrog), ANSI-C

programs

• Efficient decision procedures as computational engines of verification
(OpenSMT)

• Abstractions

• Interpolation-based Bounded Model Checking

• Function summarization [ATVA’12]

• Upgrade checking, Incremental verification [FMCAD’13], [TACAS’13]

• Recursion depth detection [STTT’15]

• Verification-aided regression testing [ISSTA’13]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 4 / 32

Background
Formal Verification in Lugano, Switzerland

• Program Verification
• Model checking software (FunFrog, EvolCheck, LoopFrog), ANSI-C

programs

• Efficient decision procedures as computational engines of verification
(OpenSMT)

• Abstractions

• Interpolation-based Bounded Model Checking

• Function summarization [ATVA’12]

• Upgrade checking, Incremental verification [FMCAD’13], [TACAS’13]

• Recursion depth detection [STTT’15]

• Verification-aided regression testing [ISSTA’13]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 4 / 32

Background
Formal Verification in Lugano, Switzerland

• Program Verification
• Model checking software (FunFrog, EvolCheck, LoopFrog), ANSI-C

programs

• Efficient decision procedures as computational engines of verification
(OpenSMT)

• Abstractions
• Interpolation-based Bounded Model Checking

• Function summarization [ATVA’12]

• Upgrade checking, Incremental verification [FMCAD’13], [TACAS’13]

• Recursion depth detection [STTT’15]

• Verification-aided regression testing [ISSTA’13]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 4 / 32

Background
Formal Verification in Lugano, Switzerland

• Abstractions
• Leveraging Interpolant strength [CAV’12]

• Loop Summarization [ATVA’08], [ASE’09]

• Program Termination [CAV’10], [TACAS’11]

• Synergy of Abstractions [STTT’10]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 5 / 32

Background
Formal Verification in Lugano, Switzerland

• Abstractions
• Leveraging Interpolant strength [CAV’12]

• Loop Summarization [ATVA’08], [ASE’09]

• Program Termination [CAV’10], [TACAS’11]

• Synergy of Abstractions [STTT’10]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 5 / 32

Background
Formal Verification in Lugano, Switzerland

• An SMT-based verification framework for software systems handling
arrays [FMSD’15]

• A quantifier-free interpolation procedure extending Lazy Abstraction
[McMillan’06] to a quantified level [LPAR’12]

• Identification of a class of relations over arrays admitting definable
first-order acceleration [TACAS’13]

• Booster: An Acceleration-Based Verification Framework for Array
Programs [ATVA’14]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 6 / 32

Background
Formal Verification in Lugano, Switzerland

• Boolean and Theory Reasoning (SAT/SMT)

• Proof reduction and proof manipulation for interpolation [FMSD’15]

• Proof Sensitive Interpolation [VSTTE’15]

• Search-Space Partitioning for Parallelizing SMT Solvers [SAT’15]

• Procedure for bit-vector extraction and concatenation [ICCAD’09]

• Generation of explanations in theory propagation [MEMOCODE’10]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 7 / 32

Background
Formal Verification in Lugano, Switzerland

• Boolean and Theory Reasoning (SAT/SMT)

• Proof reduction and proof manipulation for interpolation [FMSD’15]

• Proof Sensitive Interpolation [VSTTE’15]

• Search-Space Partitioning for Parallelizing SMT Solvers [SAT’15]

• Procedure for bit-vector extraction and concatenation [ICCAD’09]

• Generation of explanations in theory propagation [MEMOCODE’10]

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 7 / 32

Background
Formal Verification in Lugano, Switzerland

• Boolean and Theory Reasoning (SAT/SMT)

• Solver, OpenSMT, combines MiniSAT2 SAT-Solver with
state-of-the-art decision procedures for QF EUF, LRA, BV, RDL, IDL

• Extensible: the SAT-to-theory interface facilites design and plug-in of
new decision procedures

• Incremental: suitable for incremental verification

• Open-source: available under MIT license

• Parallelized: efficient search space partitioning

• Efficient: competitive open-source SMT Solver for QF UF, IDL, RDL,
LRA according to SMT-Comp.

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 8 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 9 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Interpolation
Background

• WIde application in symbolic model checking

• Bounded model checking: approximate cheaper reachability set
computation [McMillan03]

• Predicate abstraction refinement based on spurious behaviors
[Henzinger04]

• Property-based transition relation approximation [Jhala05]

• . . .

• Forementioned applications involve

• Problem encoding into logic (SAT, SMT)

• Problem solving by means of resolution based engines (SAT solvers,
SMT solvers)

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 10 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Notation
Interpolation

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• A⇒ I , I ∧ B unsatisfiable

• I defined over common symbols of A and B

• I as over-approximation A conflicting with B

• Example

• A , (p ∨ q) ∧ (p ∨ q) B , (q ∨ r) ∧ (q ∨ r)

• Interpolant q

• A⇒ q q ∧ B unsatisfiable

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 11 / 32

Interpolation
Background

• Craig’s interpolant I for unsatisfiable conjunction of formulae A ∧ B
[Craig57]

• I as over-approximation A conflicting with B

A I B

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 12 / 32

Interpolation-based Model Checking
Problems

• Problems

• Size affects efficiency

• Interpolants different in their logical strength are needed

• Collection of individual algorithms, no possibilities for adjustments wrt
the model checking tasks

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 13 / 32

Outline

1 Formal Verification at USI, Lugano

2 Interpolation-based Model Checking

3 Flexible Interpolation Framework

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 14 / 32

Interpolation-based Model Checking
Motivation

• PeRIPLO is a multi-purpose interpolation framework

• aims at producing interpolants that are suitable for the whole spectrum
of interpolation applications

• emphasis on constructing small interpolants

• flexibility in strength

• Pre-processing approaches

• proof reduction and compression

• proof manipulation for interpolation

• Proof senstive Interpolation

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 15 / 32

Interpolation-based Model Checking
Motivation

• PeRIPLO is a multi-purpose interpolation framework

• aims at producing interpolants that are suitable for the whole spectrum
of interpolation applications

• emphasis on constructing small interpolants

• flexibility in strength

• Pre-processing approaches

• proof reduction and compression

• proof manipulation for interpolation

• Proof senstive Interpolation

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 15 / 32

Interpolation-based Model Checking
Motivation

• PeRIPLO is a multi-purpose interpolation framework

• aims at producing interpolants that are suitable for the whole spectrum
of interpolation applications

• emphasis on constructing small interpolants

• flexibility in strength

• Pre-processing approaches

• proof reduction and compression

• proof manipulation for interpolation

• Proof senstive Interpolation

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 15 / 32

Interpolation-based Model Checking
Motivation

• PeRIPLO is a multi-purpose interpolation framework

• aims at producing interpolants that are suitable for the whole spectrum
of interpolation applications

• emphasis on constructing small interpolants

• flexibility in strength

• Pre-processing approaches

• proof reduction and compression

• proof manipulation for interpolation

• Proof senstive Interpolation

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 15 / 32

The Bird’s Eye View to PeRIPLO

Proof optimizerProof expander

Resolution proof optimized proof

SAT solver

φ

Interpolator

Itp

PeRIPLO

Application

proof skeleton

• Given an unsatisfiable propositional formula φ PeRIPLO constructs an
interpolant in circuit form by

1 Solving φ and extracting a compact proof skeleton from the SAT solver

2 Expanding the proof skeleton to a resolution proof

3 Optimizing the resolution proof to a smaller proof

4 Constructing an interpolant from the optimized proof

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 16 / 32

PeRIPLO Features

• Basic interpolation:

• A ∧ B → ⊥

• A→ I and I ∧ B → ⊥

• var(I) ⊆ var(A) ∩ var(B)

• Variations:

• Path, Tree and DAG interpolation

• Proof Optimization [FMSD15, ICCAD10]:
• removing resolution steps which reintroduce already resolved pivot

variables

• postponing unit resolution steps until the end of the resolution proof

• using different local rewriting rules which preserve the validity of the
proof

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 17 / 32

PeRIPLO Features

• Basic interpolation:

• A ∧ B → ⊥

• A→ I and I ∧ B → ⊥

• var(I) ⊆ var(A) ∩ var(B)

• Variations:

• Path, Tree and DAG interpolation

• Proof Optimization [FMSD15, ICCAD10]:
• removing resolution steps which reintroduce already resolved pivot

variables

• postponing unit resolution steps until the end of the resolution proof

• using different local rewriting rules which preserve the validity of the
proof

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 17 / 32

PeRIPLO Features

• Basic interpolation:

• A ∧ B → ⊥

• A→ I and I ∧ B → ⊥

• var(I) ⊆ var(A) ∩ var(B)

• Variations:

• Path, Tree and DAG interpolation

• Proof Optimization [FMSD15, ICCAD10]:
• removing resolution steps which reintroduce already resolved pivot

variables

• postponing unit resolution steps until the end of the resolution proof

• using different local rewriting rules which preserve the validity of the
proof

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 17 / 32

PeRIPLO Interface
Features

• Multifaceted interface

• A clear API for C++ for tuning the interpolation algorithm, inserting a
formula to PeRIPLO, and fetching the interpolant from PeRIPLO

• Reading and writing smtlib2

• Reading and writing the Aiger format

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 18 / 32

Interpolation in PeRIPLO
Labeling functions

• Labeled Interpolation System (LIS) framework [D’Silva et al. 2010]

• construction of interpolation algorithms from labeling functions

• generalization of various interpolation algorithms (i.e., Ms

[McMillan03], P [Pudlak97], Mw [D’Silva10])

Interpolation algorithm

LIS framework

template for labeling function L

(R,A,B) I

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 19 / 32

Interpolation in PeRIPLO
Definitions

• Given a resolution proof R, (v ,C) denotes that the variable v occurs
in a clause C of R

• The labeling function L assigns a label from the set {a, b, ab} to each
occurrence (v ,C) in R

• Given a propositional formula A ∧ B, a variable is either local, if it
occurs only in A or B, or shared if it occurs in both A and B

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 20 / 32

Interpolation in PeRIPLO
Labeling Functions [VSSTE15]

• The label L(v ,C) = b if v is local to A and L(v ,C) = a if v is local
to B.

• The label can be chosen freely for occurrences of shared variables
• Tuning the label for the shared occurrences results in different

interpolation algorithms

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 21 / 32

PeRIPLO and Different Interpolation Algorithms

• Labeling all shared variable occurrences as

• a results in the weakest interpolant Mw available in LIS

• b results in a strong interpolant Ms available in LIS

• ab results in an interpolant P that is somewhere in the middle

• The aforementioned approaches are fixed schemas with no possibility
for adopt to the task

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 22 / 32

PeRIPLO and Proof-Sensitive Interpolation

• PeRIPLO offers certain labeling functions that specifically address the
interpolant size:

• Labeling all occurrences in A as a and B as b results in an interpolant
with minimum number of distinct variables

• By analyzing the number of occurrences in the A and B part of the
proof R it is possible to construct interpolants that have a small
number of connectives

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 23 / 32

The Proof-Sensitive (PS) Labeling Functions

• PeRIPLO implements the proof-sensitive labeling functions specifically
targeted for constructing small interpolants

• let fA(p) = |{(p,C) | C ∈ A}| be the number of times the variable p
occurs in A, and fB(p) = |{(p,C) | C ∈ B}| the number the variable
p occurs in B.

• The proof-sensitive labeling function LPS is defined as

LPS(p,C) =

{
a if fA(p) ≥ fB(p)

b if fA(p) < fB(p).

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 24 / 32

The Proof-Sensitive Labeling Functions

• PeRIPLO also provides weak and strong versions of Proof-Sensitive
Approach

• Hierarchy of Interpolation Algorithms provided by PeRIPLO

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 25 / 32

PeRIPLO API

SAT solverInterpolator Labeling

Application

φ = A ∧ B SAT or
UNSAT

Proof of
UNSAT

Interpolant I
A → I
B ∧ I → ⊥

Partitions
A and B

Labeling
function

Partitions
 A and B

Proof
analysis

Strength
requirement

fA

Partitions
A and B

fB

• The API of PeRIPLO provides the application with a full control over
the interpolant generation

• Many of the more routine tasks are implemented efficiently inside
PeRIPLO so that the user does not need to take care of such details

• The system makes it comfortable to construct and experiment with
new labeling functions

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 26 / 32

Reduction Approach Evaluation [ICCAD’10]
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

Avgnodes Avgedges Avgcore T (s) Maxnodes Maxedges Maxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%

1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

• Ratio — time threshold as fraction of solving time
• # — number of benchmarks solved
• Avgnodes , Avgedges , Avgcore — average reduction in proof size
• T (s) — average transformation time in seconds
• Maxnodes , Maxedges , Maxcore — max reduction in proof size

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 27 / 32

Applications - FunFrog [FMCAD12] and eVolCheck
[TACAS13]

• Bounded Model Checkers

• Interpolants used as Function Summaries

• FunFrog - C Incremental Checker
• Stronger interpolants suit better [CAV12]

• http://verify.inf.usi.ch/funfrog

• eVolCheck - C Upgrade Checker
• Weaker interpolants suit better [CAV12]

• http://verify.inf.usi.ch/evolcheck

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 28 / 32

Applications - FunFrog and eVolCheck

 10

 100

 1000

 0 5 10 15 20 25

V
e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

M
P

Ms
PS

PS
PSs

Dmin

 10

 100

 1000

 0 5 10 15 20 25
V

e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

P

Ms

PSs

PS and PSs consistently lead to better verification time

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 29 / 32

Conclusions

• PeRIPLO is an interpolation tool for propositional logic
• Generic and flexible framework for producing interpolants on demand

• Provides an API, an smtlib2, and an AIGER interface for
communicating with other tools

• Particular emphasis on constructing small interpolants while
maintaining guarantees of interpolant strength

• For more information see http://verify.inf.usi.ch/periplo!

Future work

• Extending the interpolation to first-oder logics in SMT

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 30 / 32

http://verify.inf.usi.ch/periplo

Thank you for your attention!

Natasha Sharygina (USI) Flexible Interpolation October 2, 2015 31 / 32

	Formal Verification at USI, Lugano
	Interpolation-based Model Checking
	Flexible Interpolation Framework

